Comparative Study of Coupling Models of Feature Selection Methods and Machine Learning Techniques for Predicting Monthly Reservoir Inflow
نویسندگان
چکیده
Effective reservoir operation under the effects of climate change is immensely challenging. The accuracy inflow forecasting one essential factors supporting operations. This study aimed to investigate coupling models feature selection (FS) and machine learning (ML) algorithms predict monthly inflow. was carried out using data from Huai Nam Sai in southern Thailand. Eighteen years recorded (i.e., inflow, storage, rainfall, regional indices) with up a 12-month time lag were utilized. Three ML techniques, i.e., multiple linear regression (MLR), support vector (SVR), artificial neural network (ANN)were compared their capabilities. In addition, two FS genetic algorithm (GA) backward elimination (BE) methods, studied four predictable intervals, consisting 3, 6, 9, 12 months advance. Ten-fold cross-validation used for model evaluation. Study results revealed that methods GA BE) Could improve performance SVR ANN predicting forecasting, but they have no on MLR. Different developed suitable different time-step-ahead. BE-ANN provided best three-time-ahead (T + 3) nine-time-ahead 9) by giving an OI 0.9885 0.8818, NSE 0.9546 0.9815, RMSE 1.3155 1.2172 MCM/month, MAE 0.9568 0.9644 r 0.9796 0.9804, respectively. GA-ANN showed highest prediction six-time-ahead 6), 0.8997, 0.9407, 2.1699 1.7549 0.9759. twelve-time-ahead 12), 0.9515, 0.9835, 1.1613 0.9273 0.9835.
منابع مشابه
Improving Feature Selection Techniques for Machine Learning
As a commonly used technique in data preprocessing for machine learning, feature selection identifies important features and removes irrelevant, redundant or noise features to reduce the dimensionality of feature space. It improves efficiency, accuracy and comprehensibility of the models built by learning algorithms. Feature selection techniques have been widely employed in a variety of applica...
متن کاملon the comparison of keyword and semantic-context methods of learning new vocabulary meaning
the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...
15 صفحه اولtransference of imagery: a comparative formalistic study of shakespeares hamlet and its two persian translations
هدف از این تحقیق بررسی انتقال صور خیال هملت در دو ترجمه ی فارسی آن از نظر فرمالیستی بود. برای بدست آوردن داده-های مورد نیاز، 130 نمونه استعاره، مجاز، ایهام، کنایه و پارادوکس در متن اصلی مشخص شده و سپس بر اساس مدل نیومارک (1998) برای ترجمه ی استعاره یا بطور کلی زبان مجاز با معادل های فارسی شان مقایسه گردیدند. این تحقیق بر آن بود تا روش های استفاده شده برای ترجمه هر کدام از انواع زبان مجاز ذکر شد...
15 صفحه اولCombination of Feature Selection and Learning Methods for IoT Data Fusion
In this paper, we propose five data fusion schemes for the Internet of Things (IoT) scenario,which are Relief and Perceptron (Re-P), Relief and Genetic Algorithm Particle Swarm Optimization (Re-GAPSO), Genetic Algorithm and Artificial Neural Network (GA-ANN), Rough and Perceptron (Ro-P)and Rough and GAPSO (Ro-GAPSO). All the schemes consist of four stages, including preprocessingthe data set ba...
متن کاملa comparative study of language learning strategies employmed by bilinguals and monolinguals with reference to attitudes and motivation
هدف از این تحقیق بررسی برخی عوامل ادراکی واحساسی یعنی استفاده از شیوه های یادگیری زبان ، انگیزه ها ونگرش نسبت به زبان انگلیسی در رابطه با زمینه زبانی زبان آموزان می باشد. هدف بررسی این نکته بود که آیا اختلافی چشمگیر میان زبان آموزان دو زبانه و تک زبانه در میزان استفاده از شیوه های یادگیری زبان ، انگیزه ها نگرش و سطح مهارت زبانی وجود دارد. همچنین سعی شد تا بهترین و موثرترین عوامل پیش بینی کننده ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water
سال: 2022
ISSN: ['2073-4441']
DOI: https://doi.org/10.3390/w14244029